
ARexxGuide

ARexxGuide ii

COLLABORATORS

TITLE :

ARexxGuide

ACTION NAME DATE SIGNATURE

WRITTEN BY October 17, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

ARexxGuide iii

Contents

1 ARexxGuide 1

1.1 ARexxGuide Copyright © 1993,1994 Robin Evans . 1

1.2 ARexxGuide | Registration | THANK YOU FOR YOUR SUPPORT! . 1

1.3 ARexxGuide | CONTENTS . 2

1.4 ARexxGuide | GLOSSARY (Press -Retrace- to return to previous node) . 9

1.5 ARexxGuide | Interactive examples -- Requirements . 14

ARexxGuide 1 / 15

Chapter 1

ARexxGuide

1.1 ARexxGuide Copyright © 1993,1994 Robin Evans

AN AMIGAGUIDE® TO ARexx Second edition (v2.0a)
by Robin Evans

Registration

Comprehensive contents
Introduction Tutorials Techniques

Reference
Basic elements Instructions Functions
Guide to the powders Syntax & explanation Syntax & explanation
& potions in the ARexx of keywords and of built-in & support
chemistry set. instructions functions.
Operators Commands Error codes
Glue for arithmetic, Utility programs. Error codes/messages.
comparison, & logical Possible causes and
expressions. solutions.

INDEX

Copyright © 1993,1994 Robin Evans. All rights reserved.

1.2 ARexxGuide | Registration | THANK YOU FOR YOUR SUPPORT!

This guide is shareware. Please use it and pass it on (in its ←↩
original

archive) to your friends and acquaintances. If you learn something from
the guide or find it helpful in writing ARexx programs, then please take a
moment to fill out the registration form and send in the fee.

The requested fee for this guide is $15.00. For that you get the complete
reference you see before you now -- information you would pay $25 to $40
for if it were presented in traditional book form.

ARexxGuide 2 / 15

Sorry, folks, we don’t have operators standing by to take your order, but
we do have -- yes, standing by -- representatives of the worlds’s postal
services who will deliver your registration fee to the address below.

To make things easier, and to provide information helpful in making future
revisions to this guide, the button below will guide you through an
on-line registration form that can be printed immediately or saved to disk.

Fill out registration form

*
Send registration fee (and optional form) to:

Robin Evans
1020 Seneca #405
Seattle WA 98101-2720

And thank you, very much.

Please send comments or requests to any of the following on-line
addresses:

robin@halcyon.com on Internet
R.EVANS6 on GEnie
r.evans6@genie.geis.com on Internet

Next: ARexxGuide contents | Prev: Registration intro | Contents: main

1.3 ARexxGuide | CONTENTS

Foreword:

Preface
Acknowledgements
References
About the author
Compatibility issues

About this guide
Navigating hints

Intro to ARexx
Hello World!
Why ARexx?
Getting it started
Writing programs
Running a script

Tutorials:
Using ARexx with macros: Extending keyboard macros

Simple macro: recording keystrokes
Adding ARexx control to the macro
A closer look at ARexx IF instruction
Repeating macro with an ARexx loop

ARexxGuide 3 / 15

Growing a macro
ADDRESS and the macro
Debugging a macro

Using the ARexxGuide online help system
Setting up a help key macro
Environmental variables
Information about a non-matches
Building a new help-key macro

GetCLine: Get current line from editor
GetCPos: Get cursor position from editor
GetCWord: Calculate (or get) current word
DisplayStatus: Display a message in status bar
BoolReq: Post a Boolean requester
GetWinInfo: Get information about editor’s window
EditorExit: Send special editor commands on exit
SetExecStr: Set command issued by info window
SetAddress: Set the address used by info window
DisplayAG: Display the node in AmigaGuide viewer

A complete program example: Uncrunch.rexx

Interactive examples:

*
Test for valid symbols

Comparison demonstration
NUMERIC demonstration
TRACE demonstration
Standard I/O demonstration
Break-key demonstration

Techniques:
Strings

CountChar(): count characters with COMPRESS()
CountWords(): count words in a file
Format data into table form
Format(): round and format a number
AddComma(): add commas to an integer

Alternative: add commas within a loop
WordWrap(): wordwrap text to a defined length
ParseFileName(): split name of file from path

Input/Output
Open console windows for I/O
Output text to a printer
Read data from one file, write to another
Retrieve result of AmigaDOS command
Getting and sending message packets

Data storage and retrieval
Store global variables on the clip list
Get and set environmental variables
Retrieve data from source code
Create a data scratchpad with PUSH, QUEUE, and PULL
SeekToRecord(): pull single record from data file
Use VALUE() to create interpreted variable names
Check unique datatypes with VERIFY()
Determine version number of any library

Basic Elements:

ARexxGuide 4 / 15

Structure of an ARexx program
Tokens

Comment tokens
String tokens

Hex and binary strings
Symbol tokens

Fixed symbols
Variable symbols

Operator tokens
Concatenation || <blank> <abuttal>
Arithmetic + - | / // %
Comparative < > = == >= <=
Logical & | && ~

Reserved characters
The comma: Continuation character
The semicolon: Clause end symbol

Using semicolons for in-line scripts
The colon: Label identifier
Parenthesis: Grouping / Function argument list

Expressions
Numbers

Numeric precision
Strings

Treating numbers as strings
Variables

Using variables
Compound variables

Overview: Using compound variables
Stem variables
Extending stem variables
Substituting values in compound variables
Using strings as the derived name of a branch
Setting default value of a compound variable
Finding values in a compound variable

Special variables
RC
RESULT
SIGL

’Natural’ data typing in ARexx
Function calls

Internal functions
Built-in functions
Library/Host functions
External functions
Function arguments

Operations
Concatenation
Arithmetic
Comparative
Logical
Conditional expressions

Avoiding accidental commands from expressions
Clauses

Assignment clauses
Instructions
Command clauses

Command host: what is it?

ARexxGuide 5 / 15

The default host
Determining the initial host
Entering commands in a script
Example script

Label clauses
Null clauses

Instruction keywords:
ADDRESS
ARG
BREAK

Breaking structure
CALL
DO

<number>
Index variable/TO/BY
FOR
WHILE/UNTIL
FOREVER
END

DROP
ECHO
EXIT
IF

ELSE
INTERPRET
ITERATE
LEAVE
NOP
NUMERIC
OPTIONS
PARSE

ARG
EXTERNAL
NUMERIC
PULL
SOURCE
VALUE <expression> WITH
VAR
VERSION
Templates

Tokenization
The period: Placeholder token

Pattern markers
Positional markers
Using variables as template markers
Combining different types of markers
Using multiple templates

ARexx departures from REXX-standard PARSE
PROCEDURE

EXPOSE
PULL
PUSH
QUEUE

PUSH, QUEUE and REXX data-stream I/O
RETURN
SAY

ARexxGuide 6 / 15

SELECT
WHEN
OTHERWISE

SIGNAL
ON | OFF <interrupt>

BREAK_C
| BREAK_D
| BREAK_E
| BREAK_F
ERROR
FAILURE
HALT
IOERR
NOVALUE
SYNTAX

<label name>
TRACE

Trace options
Interactive tracing: ?
Command inhibition: !

UPPER

ARexx functions:
Comparison functions

ABBREV
COMPARE
FIND
INDEX
LASTPOS
POS
VERIFY

String manipulation
CENTER
COMPRESS
COPIES
DELSTR
INSERT
LEFT
LENGTH
OVERLAY
REVERSE
RIGHT
STRIP
SUBSTR
TRANSLATE
TRIM
UPPER
XRANGE

Word manipulation
DELWORD
SPACE
SUBWORD
WORD
WORDINDEX
WORDLENGTH
WORDS

Char/Num translation

ARexxGuide 7 / 15

B2C
C2B
C2D
C2X
D2C
D2X
X2C
X2D

Number manipulation
ABS
HASH
MAX
MIN
RANDOM
RANDU
SIGN
TRUNC

Informational
DATE

DATE() Options
Persistence of DATE() & TIME() settings

SHOW
SHOWDIR
SHOWLIST

SHOWLIST() Options
TIME

TIME() Options
The elapsed time counter
Persistence of DATE() & TIME() settings

File input/output
Overview of I/O functions
Setting the logical file name
Using I/O functions other devices
Standard I/O files
CLOSE
EOF
LINES
OPEN
READCH
READLN
SEEK
WRITECH
WRITELN

File management
DELETE
EXISTS
MAKEDIR
RENAME
STATEF

ARexx control
ADDRESS
ADDLIB
ARG
DATATYPE

DATATYPE() Options
DELAY
DIGITS

ARexxGuide 8 / 15

ERRORTEXT
FORM
FUZZ
GETCLIP
PRAGMA
REMLIB
SETCLIP
SOURCELINE
SYMBOL
TRACE
VALUE

Message ports
Using ports in ARexx programs
CLOSEPORT
GETARG
GETPKT
OPENPORT
REPLY
TYPEPKT
WAITPKT

Memory management
ALLOCMEM
BADDR
EXPORT
FORBID
FREEMEM
FREESPACE
GETSPACE
IMPORT
NEXT
NULL
OFFSET
PERMIT
STORAGE

Bit-wise operations
BITAND
BITCHG
BITCLR
BITCOMP
BITOR
BITSET
BITTST
BITXOR

ARexx operators:
Concatenation
Arithmetic

Table of arithmetic operators
Comparison

Table of comparison operators
Logical

Table of logical operators
Operator priority
Parentheses: Change priority

AmigaDOS command programs:
RexxMast

ARexxGuide 9 / 15

RXC
RX
HI
RXLIB
RXSET
TCO
TCC
TS
TE
WaitForPort

Useful tools:
WShell
ExecIO

Error codes and messages

GLOSSARY
INDEX

1.4 ARexxGuide | GLOSSARY (Press -Retrace- to return to previous node)

ARexxGuide glossary of terms
~~~~~~~~~~~~~~~~~~~~~~~~~~~~

ADDRESS STRING A four-character (4-byte) string that represents a
machine address. The character string will be
meaningless in itself, but can be translated to
meaningful form with the c2d() or c2x() functions.’

ASSIGNMENT A process that gives (assigns) a value of some kind
to a variable. An assignment clause takes this form:

<symbol> = <expression>;

The <symbol> -- a variable -- becomes a placeholder
for the value of <expression>.

There are also other less common, ways that an
assignment can be made, notably the PARSE and
DO instructions.

BOOLEAN Either true or false, which -- in ARexx -- is
considered to be 1 for true and 0 for false. Named
after the mathematician George Boole.

CLAUSE A collection of tokens forming a program statement
that can be executed by ARexx, usually contained on a
single line. A clause is the smallest language unit
that can be executed as a statement.

COMMAND A program statement ( a clause ) that is sent to an
external environment ( the host ) to be run. The host



ARexxGuide 10 / 15

determines the syntax and other requirements for a
command. Although it is often overlooked, commands
should be enclosed in quotation marks.

CON: Or: Console Window. A logical device that opens a
text window on the Workbench or other public screen.
This device can be used as the <filename> with the
file I/O functions to direct output to a window
opened by the script.

CONCATENATE To combine one part with another to form a new whole.
When two strings are concatenated, they are joined
together to form a new string.

A space between two expressions acts as a concaten-
ation operator in ARexx as do the characters ‘||’’.

CONSTANT In ARexx, a symbol that cannot be used as the target
of a variable assignment . The most common constants
in ARexx are numbers.

CONTINUATION When a comma ‘,’’ is used as the last significant
token in a line, it indicates that the current line
should be combined with the next line to form a
single clause . Comments and other null values may
be included after the continuation token.

CONTROL STRUCTURE A programming construct that allows a series of
statements to be executed as part of a block. The
instructions DO , SELECT , and IF create control
structures in ARexx.

DEBUG To search for and eliminate (eventually) problems or
bugs in a program. The TRACE instruction aids
debugging in ARexx.

DYADIC Having two parts. In ARexx, the term refers to
operations that have two operands (2 + 2, for
instance). Some operations have only one operator
(-1, for instance) and are referred to here as
prefix operations. The more technical name for the
opposite of a dyadic operation is unary operation.

EGREGIOUS It means "very bad," but use of this word shows that
the writer has spent too much time in the company of
lawyers. (Which may be the same thing, come to think
of it.)

EXPONENTIAL A way of writing a number in which one value --
the exponent -- is a power of ten by which the other
value will be multiplied before use.

In ARexx, an ‘e’’ in a number indicates exponential
notation. 7.34e6 is the same number as 7340000.

EXPRESSION One or more tokens that can be evaluated to produce a



ARexxGuide 11 / 15

a single value. An expression can be anything from a
single number to a mixture of numbers, strings,
variables, sub-expressions, and function calls.

FUNCTION A subprogram that returns a single value to the
calling environment. A function might be defined in
any of several ways. Some are a built-in feature of
the language, some are available in external
libraries , and some are written by the user either
as a subroutine in the executing script or as an
external program.

GUI Graphic User Interface. It’s the acronym used to refer
to things like windows, icons, mouse pointers, menus,
and requesters that are common on the current
generations of computer systems.

HOST A program that can accept and act on commands issued
from an ARexx script. The ADDRESS instruction is used
to set up communication with a host.

INSTRUCTION The basic program statement in ARexx scripts. An
instruction may include several clauses, but always
begins with a REXX keyword which must be the first
token in the clause .

Instruction include IF , CALL , DO and similar
statements.

INTERPRETER A program that translates source code (the program
lines you write) into machine instructions. It does
that each time the script is run. RexxMast is the
ARexx interpreter program.

IO Input/Output. The term refers to the various ways of
obtaining data and displaying or saving it. The I/O
system on the Amiga includes disk drives, windows,
and requesters.

ITERATION A program-ese synonym for ‘repetition’. To a human
the instruction to "Do forever" would be a Sisyphean
punishment. To a computer, it is just another task.
In ARexx, iteration is performed by a single
instruction, DO , which has a wide range of options
to give the programmer control over when the
iteration stops.

KEYWORD The word that identifies an ARexx instruction or the
option to an instruction. Keywords and instructions
are detailed in the Instruction reference.

LOGICAL DEVICE A part of the computer system defined through
software. In AmigaDOS, logical devices intervene
between the application program (including ARexx) and
such hardware devices as disk drives, printers, and
the monitor screen.



ARexxGuide 12 / 15

LOOP A section of program code that is repeated (or
iterated). Looping in ARexx is controlled by the DO
instruction.

MANTRA In Hinduism, a sacred formula, repeated over and over
again, that is believed to posses special power.
(Looking up this word demonstrates one of two things:
either the user wasn’t around for the 60’’s or wasn’t
paying attention. <insert smiley chars> )

NESTED To place one thing within another just as an egg is
placed in a bird’s nest. A nested function is one
function used as an argument to another function as
in RIGHT(TRUNC(Amount, 2), 6). Here the TRUNC()
function, which truncates the decimal points on a
number, is nested within the RIGHT() function, which
right-justifies the resulting number.

NIL: A logical device recognized by AmigaDOS that will
throw away input or output directed to it.

NUMBER A string or symbol made up only of digits (0 - 9)
with an optional decimal point ‘.’’ that may be
placed anywhere within the string -- at the
beginning, at the end, or anywhere in between.

Another option allows for exponential notation
when the letter ‘e’ is included within the string:
The number to the right of the ‘e’’ is interpreted
as the exponent to the value on the left.

OPERATION An expression that includes an operator and usually
two terms that are combined in a way specified by the
operator to produce a new single value. ‘3+5’’ is an
arithmetic operation.

Some operators (like negation) act on a single term

OPERATOR Any of a variety of tokens that represent an
operation that is to be performed on the adjoining
expressions . Operators include these characters
(sometimes used in combination):

+ - * / % | & = ~ > <

A space between two strings is also an operator.

PREFERENCES A series of programs that are part of the Amiga OS.
They allow the user to customize most aspects of the
system.

PROTOTYPING The process of developing an initial version of a
software application in one language to test the
logic of the code and the usefulness of contemplated
options.

PRT: A logical device recognized by AmigaDOS that directs



ARexxGuide 13 / 15

output to the printer defined in Preferences. This
device can be used as the <filename> with the file
I/O functions to print data from an ARexx script.

RESERVED A token that serves a specialized purpose in the
language and cannot be used for any other purpose.

REXX has a limited set of reserved tokens: The single
characters representing operators and special
characters are reserved in all situations.
Instruction keywords and sub-keywords are reserved
only within the limited range of the instruction
itself. The variables [x] and [b] -- although they
are not technically reserved -- should be avoided
because of possible conflicts with hex and binary
strings.

STDERR Standard error device. This is the logical name
assigned to a device to which ARexx will send error
messages and the output of tracing. If the trace
console is open, that will become STDERR. The PARSE
EXTERNAL instruction retrieves input from this device.

STDIN Standard input device. This is the logical name
assigned to a device from which ARexx will retrieve
input then the PARSE PULL instruction is used. It
is usually the shell from which a program was
launched, although a script started from another
environment will often have STDIN assigned to NIL: .

STDOUT Standard output device. This is the logical name of
the device to which ARexx will output the expression
used in a SAY instruction. It is usually the shell
from which a program was launched, although a script
started from another environment will often have
STDOUT assigned to NIL:.

STRING A character or group of characters that are stored
and referenced as a unit. A ‘literal string’’ or
string token is surrounded by quotation marks --
either single { ’’ } or double { " }, but the word
‘string’ may also refer to the value of a variable,
or the result of an expression.

A string can comprise up to 65535 characters.

SUBROUTINE A section of code separated from the main body of a
program. In ARexx, subroutines are identified by
labels and usually serve as internal functions .

SYMBOL A token made up of any of the following alphabetic
characters, digits, or special characters:

A to Z a to z 0 to 9 . ! $ _ @ #

The following are symbols: Names for variables or
functions , numbers , and instruction keywords .



ARexxGuide 14 / 15

A symbol may be entered in a mixture of upper- and
lowercase alphabetic characters, but all symbols are
translated to uppercase during evaluation.

Symbols can have up to 65535 characters.

TOKEN The simplest (smallest) item in the language, from
which more complex elements are formed. A token might
be a single character like ‘+’’ or ‘/’’, a number, or a
word like ‘FOO’’ or ‘CALL’’.

TRUNCATE To shorten by chopping off the trailing end. If a
decimal number like 1.9 is truncated to one digit, it
would become 1, rather than the number 2 that would
result from rounding the number.

VARIABLE A symbol that becomes a placeholder for another value
and can, in most cases, be used in place of the
literal value it represents. A variable name follows
general symbol-naming rules.

1.5 ARexxGuide | Interactive examples -- Requirements

The
registration form
and several interactive examples scattered

throughout ARexxGuide use ARexx scripts to provide the interactive
environment. Because they must try to run a script, the buttons impose
some extra requirements:

1. The RX command must be located in a directory that is included
in the Workbench command search path.

The RX command is included in a special directory, "rexxc," on Workbench
disks distributed by Commodore. If the contents of that directory are not



ARexxGuide 15 / 15

included in your search path, the links will fail. Either add "sys:rexxc"
to the search path or move RX to a directory like "C:" that is already in
the path.

(AmigaGuide has a built-in "RX" link command. It is not used here because
scripts launched with the command exhibit some inconsistent behavior.)

2. The #?.rexx files distributed with the ARexxGuide archive must be
stored either in the REXX: directory or in ARexxGuide’s current
directory.

The most versatile place to store any .rexx file is in the REXX: directory
since it can then be found and launched by RX no matter what the current
directory is. That directory can become crowded, however. Since the
interpreter looks for files first in the current directory, it can be a

useful alternative for task-specific ARexx scripts like those included
with this guide.

If you decide to keep the .rexx files in another directory and if the
guide is launched from a shell or directory utility, the ‘CD’ command
should be used before launching the guide to change the working directory
to the location of the .rexx files. If the guide is launched with an icon,
the .rexx files should be stored in the same directory as the icon’s .info
file.

3. AmigaGuide should be launched as a command rather than through a
call to the ShowNode() function of amigaguide.library.

Scripts that use the library function to launch AmigaGuide files have
circulated on the nets. Use of the function limits AmigaGuide’s ability to
call ARexx scripts.


	ARexxGuide
	 ARexxGuide Copyright © 1993,1994 Robin Evans
	ARexxGuide | Registration | THANK YOU FOR YOUR SUPPORT!
	ARexxGuide | CONTENTS
	 ARexxGuide | GLOSSARY (Press -Retrace- to return to previous node)
	ARexxGuide | Interactive examples -- Requirements


